Query & search registries

This guide walks through all the ways of finding metadata records in LaminDB registries.

# !pip install lamindb
!lamin init --storage ./test-registries
Hide code cell output
→ connected lamindb: testuser1/test-registries

We’ll need some toy data.

import lamindb as ln

# create toy data
ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()

# see the content of the artifact registry
ln.Artifact.df()
Hide code cell output
→ connected lamindb: testuser1/test-registries
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 bkU5Lqy16WRhXSW30000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-13 13:04:10.143092+00:00 1
2 Eqk0BWkMUXGYvqem0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-13 13:04:10.132148+00:00 1
1 bN0PHs1N1TZG4Rto0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-13 13:04:10.014634+00:00 1

Look up metadata

For registries with less than 100k records, auto-completing a Lookup object is the most convenient way of finding a record.

For example, take the User registry:

# query the database for all users, optionally pass the field that creates the key
users = ln.User.lookup(field="handle")

# the lookup object is a NamedTuple
users
Hide code cell output
Lookup(testuser1=User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-13 13:04:06 UTC), dict=<bound method Lookup.dict of <lamin_utils._lookup.Lookup object at 0x7fe9b806d2b0>>)

With auto-complete, we find a specific user record:

user = users.testuser1
user
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-13 13:04:06 UTC)

You can also get a dictionary:

users_dict = ln.User.lookup().dict()
users_dict
Hide code cell output
{'testuser1': User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-13 13:04:06 UTC)}

Query exactly one record

get errors if more than one matching records are found.

# by the universal base62 uid
ln.User.get("DzTjkKse")

# by any expression involving fields
ln.User.get(handle="testuser1")
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-13 13:04:06 UTC)

Query sets of records

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 bN0PHs1N1TZG4Rto0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-13 13:04:10.014634+00:00 1
2 Eqk0BWkMUXGYvqem0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-13 13:04:10.132148+00:00 1
3 bkU5Lqy16WRhXSW30000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-13 13:04:10.143092+00:00 1

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record in a row.

  • .all(): A QuerySet.

  • .one(): Exactly one record. Will raise an error if there is none. Is equivalent to the .get() method shown above.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for records

Search the toy data:

ln.Artifact.search("iris").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 Eqk0BWkMUXGYvqem0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-13 13:04:10.132148+00:00 1

Let us create 500 notebook objects with fake titles, save, and search them:

transforms = [ln.Transform(name=title, type="notebook") for title in ln.core.datasets.fake_bio_notebook_titles(n=500)]
ln.save(transforms)

# search
ln.Transform.search("intestine").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
1 leOA3WuIVPub0000 None True Investigate IgD IgG1 intestine. None None notebook None None None None None 2024-11-13 13:04:19.306532+00:00 1
3 rEPN4O6V2lg10000 None True Centroacinar Cell IgE intestine Arteries. None None notebook None None None None None 2024-11-13 13:04:19.306789+00:00 1
30 3cfN4OHBhA8q0000 None True Ige IgE IgE Centroacinar cell IgD intestine rank. None None notebook None None None None None 2024-11-13 13:04:19.309392+00:00 1
45 oh8rBta6FccI0000 None True Cluster IgE intestine Golgi cells classify Iri... None None notebook None None None None None 2024-11-13 13:04:19.310816+00:00 1
50 J6uBS1cpv3Ja0000 None True Igy intestinal IgG1 intestine visualize IgE IgG4. None None notebook None None None None None 2024-11-13 13:04:19.311290+00:00 1

Note

Currently, the LaminHub UI search is more powerful than the search of the lamindb open-source package.

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations and leverage different comparators.

ln.Artifact.filter(created_by__handle__startswith="testuse").df()  
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 bN0PHs1N1TZG4Rto0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-13 13:04:10.014634+00:00 1
2 Eqk0BWkMUXGYvqem0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-13 13:04:10.132148+00:00 1
3 bkU5Lqy16WRhXSW30000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-13 13:04:10.143092+00:00 1

The filter selects all artifacts based on the users who ran the generating notebook.

Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.

Comparators

You can qualify the type of comparison in a query by using a comparator.

Below follows a list of the most import, but Django supports about two dozen field comparators field__comparator=value.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 bN0PHs1N1TZG4Rto0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-13 13:04:10.014634+00:00 1

less than/ greater than

Or subset to artifacts smaller than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 Eqk0BWkMUXGYvqem0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-13 13:04:10.132148+00:00 1
3 bkU5Lqy16WRhXSW30000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-13 13:04:10.143092+00:00 1

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 bN0PHs1N1TZG4Rto0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-13 13:04:10.014634+00:00 1
3 bkU5Lqy16WRhXSW30000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-13 13:04:10.143092+00:00 1

order by

ln.Artifact.filter().order_by("-updated_at").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 bkU5Lqy16WRhXSW30000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-13 13:04:10.143092+00:00 1
2 Eqk0BWkMUXGYvqem0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-13 13:04:10.132148+00:00 1
1 bN0PHs1N1TZG4Rto0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-13 13:04:10.014634+00:00 1

contains

ln.Transform.filter(name__contains="search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
7 R4L9Q8eocrTd0000 None True Research Golgi cells Centroacinar cell intesti... None None notebook None None None None None 2024-11-13 13:04:19.307175+00:00 1
16 rpgDLW8gDmVG0000 None True Igg4 study Satellite glial cells research IgE. None None notebook None None None None None 2024-11-13 13:04:19.308036+00:00 1
17 06nvKtB6PQEA0000 None True Classify research IgE Centroacinar cell resear... None None notebook None None None None None 2024-11-13 13:04:19.308131+00:00 1
23 harFipygAEhs0000 None True Research IgG4 IgG Dendritic cell. None None notebook None None None None None 2024-11-13 13:04:19.308725+00:00 1
28 SmmbM90Mjvsl0000 None True Ige efficiency research IgE. None None notebook None None None None None 2024-11-13 13:04:19.309202+00:00 1

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
7 R4L9Q8eocrTd0000 None True Research Golgi cells Centroacinar cell intesti... None None notebook None None None None None 2024-11-13 13:04:19.307175+00:00 1
16 rpgDLW8gDmVG0000 None True Igg4 study Satellite glial cells research IgE. None None notebook None None None None None 2024-11-13 13:04:19.308036+00:00 1
17 06nvKtB6PQEA0000 None True Classify research IgE Centroacinar cell resear... None None notebook None None None None None 2024-11-13 13:04:19.308131+00:00 1
23 harFipygAEhs0000 None True Research IgG4 IgG Dendritic cell. None None notebook None None None None None 2024-11-13 13:04:19.308725+00:00 1
28 SmmbM90Mjvsl0000 None True Ige efficiency research IgE. None None notebook None None None None None 2024-11-13 13:04:19.309202+00:00 1

startswith

ln.Transform.filter(name__startswith="Research").df()
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
7 R4L9Q8eocrTd0000 None True Research Golgi cells Centroacinar cell intesti... None None notebook None None None None None 2024-11-13 13:04:19.307175+00:00 1
23 harFipygAEhs0000 None True Research IgG4 IgG Dendritic cell. None None notebook None None None None None 2024-11-13 13:04:19.308725+00:00 1
85 Kru1KUCVX35k0000 None True Research Zona reticularis intestinal study. None None notebook None None None None None 2024-11-13 13:04:19.319482+00:00 1
153 k753YrpKVlpu0000 None True Research IgG4 candidate IgE cholecystokinin-se... None None notebook None None None None None 2024-11-13 13:04:19.329298+00:00 1
215 eDsLAv7qjpIC0000 None True Research IgE Parietal epithelial cell Bronchi ... None None notebook None None None None None 2024-11-13 13:04:19.338542+00:00 1
270 w1KaJykkmihG0000 None True Research IgE Bronchioles investigate IgE intes... None None notebook None None None None None 2024-11-13 13:04:19.347109+00:00 1
335 l1KNHDlKJqPL0000 None True Research classify Centroacinar cell IgG1 IgE IgA. None None notebook None None None None None 2024-11-13 13:04:19.356839+00:00 1
360 15CcxQrM6NKO0000 None True Research Parietal epithelial cell intestine st... None None notebook None None None None None 2024-11-13 13:04:19.359161+00:00 1

or

ln.Artifact.filter(ln.Q(suffix=".jpg") | ln.Q(suffix=".fastq.gz")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 bN0PHs1N1TZG4Rto0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-13 13:04:10.014634+00:00 1
3 bkU5Lqy16WRhXSW30000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-13 13:04:10.143092+00:00 1

negate/ unequal

ln.Artifact.filter(~ln.Q(suffix=".jpg")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 Eqk0BWkMUXGYvqem0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-13 13:04:10.132148+00:00 1
3 bkU5Lqy16WRhXSW30000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-13 13:04:10.143092+00:00 1

Clean up the test instance.

!rm -r ./test-registries
!lamin delete --force test-registries
Hide code cell output
• deleting instance testuser1/test-registries